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Direct numerical simulations of three time-developing turbulent plane wakes have
been performed. Initial conditions for the simulations were obtained using two realiza-
tions of a direct simulation from a turbulent boundary layer at momentum-thickness
Reynolds number 670. In addition, extra two-dimensional disturbances were added in
two of the cases to mimic two-dimensional forcing. The wakes are allowed to evolve
long enough to attain approximate self-similarity, although in the strongly forced case
this self-similarity is of short duration. For all three flows, the mass-flux Reynolds
number (equivalent to the momentum-thickness Reynolds number in spatially devel-
oping wakes) is 2000, which is high enough for a short k−5/3 range to be evident in
the streamwise one-dimensional velocity spectra.

The spreading rate, turbulence Reynolds number, and turbulence intensities all
increase with forcing (by nearly an order of magnitude for the strongly forced
case), with experimental data falling between the unforced and weakly forced cases.
The simulation results are used in conjunction with a self-similar analysis of the
Reynolds stress equations to develop scalings that approximately collapse the profiles
from different wakes. Factors containing the wake spreading rate are required to
bring profiles from different wakes into agreement. Part of the difference between
the various cases is due to the increased level of spanwise-coherent (roughly two-
dimensional) energy in the forced cases. Forcing also has a significant impact on
flow structure, with the forced flows exhibiting more organized large-scale structures
similar to those observed in transitional wakes.

1. Introduction
The plane wake studied here is one of several canonical free-shear flows that are

used as test flows for the development of turbulence models and turbulence control
strategies. These flows are also of interest in many practical engineering applications
such as high-lift airfoil configurations where one lifting surface (a flap) may operate
in or near the wake of an upstream component. The numerical simulations reported
here are the first of several to be performed to provide data for turbulence modelling
relevant to such a configuration.

The evolution of the wake is generally broken up into three regions: the near
field, an intermediate field, and the far or ‘equilibrium’ region of the wake. It is
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widely recognized that the dynamics of the large-scale coherent structures in the flow
play a dominant role in the first two regions of the flow; however, their role in the
latter region is not as well understood. It is also known that in this latter region
the governing equations for the single-point moments admit similarity solutions in
the small-deficit (or infinite downstream distance, x) limit, where the thickness of
the layer grows as x1/2. Traditionally, it was argued (e.g. Townsend 1976) that the
effects of differences in the initial conditions die out in the far field, so that the
asymptotic state of all wakes is universal. This hypothesis was not supported by
later experimental evidence. For example, Wygnanski, Champagne & Marasli (1986)
reported non-dimensional wake growth rates between 0.29 and 0.41 depending on
the body used to generate the wake. Even larger growth rates could be achieved if
two-dimensional forcing was used to excite the large-scale motions (Wygnanski et al.
1986; Marasli, Champagne & Wygnanski 1992). The profiles of the scaled turbulent
normal stresses in the wake far field were also different, as predicted in a similarity
analysis by George (1989), despite the collapse of the mean velocity profiles. There
continues to be disagreement about whether multiple similarity states are possible in
the plane wake, with Narasimha (1989) and Sreenivasan & Narasimha (1982) arguing
that the growth-rate differences observed by Wygnanski et al. (1986) and others are
long-lived transients. Because the time period that can be simulated computationally
is limited, we will be unable to definitively settle this issue here.

The evolution of large-scale coherent structures in the plane wake has been of great
interest (e.g. Antonia, Browne & Bissett 1987; Hayakawa & Hussain 1989). Part of the
reason for this interest is that the well-known features of transitional wakes, such as
the Kármán street, have been observed in the turbulent wake as well. George (1989)
argued that the differences between the asymptotic states in the far field of the wake
could arise from persistence of different large-scale structures from the near field into
the far field of the wake. However, the extent to which such structures are dynamically
important in the far field and how they vary among different wakes is not, as yet,
well understood. For example, the level of the ‘two-dimensionality’ that occurs in
developed free-shear flows has been widely debated, with some researchers claiming
that the relatively organized large-scale structures will ultimately break down into
more three-dimensional turbulence, leading to a universal asymptotic similarity state.
It is thus of interest to determine if wakes can achieve self-similar states with different
flow structures. To this end, a complementary study is being pursued to examine if the
governing equations for more complex statistical measures of the turbulent structures
(in particular the two-point velocity correlation) admit similarity solutions.

The non-uniqueness of the approximate similarity states provides both complica-
tions and opportunities. It complicates the prediction of the flow using turbulence
models since it is necessary to ensure that the model allows for multiple asymptotic
states. The non-uniqueness of the flow, though, suggests that it should be possible to
control the evolution of the wake by manipulation of the generating body. Progress in
both of these areas will be facilitated by knowledge of how the differences in the sta-
tistical measures and structures of the far wake are related to differences in the initial
state of the wake. Direct numerical simulation is an ideal tool for providing this in-
formation because it allows the precise prescription of the initial/inlet conditions and
also provides very detailed information about the flow. Three such simulations with
differing initial conditions are reported here. The results of the simulations are used
in conjunction with a similarity analysis following the approach outlined by George
(1989) to examine the differences between the ‘equilibrium’ states of the three flows.
The simulations are described in §2, details of the self-similar analysis and statistical
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Figure 1. Streamwise one-dimensional energy spectra in the unforced wake simulation and
the strongly forced wake simulation at (a) the wake centreline, y = 0, in the self-similar
period (τ = tU2

d/ṁ = 91.5 for the unforced case and τ = 50.0 for the strongly forced case) and (b)

at the y-location of maximum q2 at τ = 0. The straight lines show a k−5/3 dependence.

descriptions of the three simulated flows are presented in §3, and the structural features
of the flows are discussed in §4. Finally, some concluding remarks are given in §5.

2. The simulations
The numerical simulations discussed here were performed by directly solving the

three-dimensional time-dependent incompressible Navier–Stokes equations with a
Galerkin spectral method (Spalart, Moser & Rogers 1991). However, simulating a
wake flow in a computational domain that includes the wake-producing body as well
as a long enough streamwise region for the resulting turbulent wake to reach self-
similarity is not computationally feasible. Instead, recall that a spatially developing
plane wake only approaches self-similarity asymptotically for |δU/U∞| � 1, where
δU = U(y = 0)−U∞ is the centreline wake deficit and U∞ is the free-stream velocity.
Asymptotically, in the same limit, a section of the wake viewed in a reference frame
moving at the free-stream velocity appears to be a parallel shear flow evolving in time.
Thus, instead of simulating the entire wake and the body generating it, we can simulate
a section of the wake by computing such a time-developing flow. Note that the same
formulation applies to a jet with coflow (δU positive) provided δU is again small
compared to U∞. We think of the simulations described here as wakes because the
initial conditions (see below) are designed to model the turbulent wake of a flat plate.

Formally, the spatially and temporally evolving wakes differ in that different integral
quantities are preserved. In the time-developing wake, the cross-stream integrated mass
flux deficit (normalized by density and unit depth) ṁ = −

∫ ∞
−∞ δU dy is preserved,

while in the spatially evolving wake, the integrated momentum flux deficit U2
∞θ =

−
∫ ∞
−∞ δU(U∞ + δU) dy is preserved. However, in the limit of small deficits, the mass

flux deficit is given by ṁ = U∞θ, so in this limit, the same integral quantities are
conserved in the spatial and temporal wakes. In the time-developing wake, the free-
stream velocity is not dynamically relevant and only the deficit is important. Thus,
in what follows, non-dimensionalization will be based on ṁ and the initial magnitude
of the velocity deficit, Ud. In the three flows described here, the Reynolds number
Rem = ṁ/ν is 2000. This Reynolds number is high enough to produce a short k−5/3

spectral range in the streamwise one-dimensional spectrum (figure 1).
The initial conditions for the simulations in this study were generated using two re-

alizations of a turbulent boundary layer computed by Spalart (1988) at a momentum-
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thickness Reynolds number of 670. The solution domain for the simulations is
periodic in the streamwise (x) and spanwise (z) directions with periods 50ṁ/Ud and
12.5ṁ/Ud, respectively, to correspond to those in the boundary layer simulations. The
streamwise domain length is much larger than the wavelength of the most unstable
disturbance to the mean at t = 0 and is more than four times that associated with
the mean at the start of the self-similar period (see §3.2). Different realizations were
used for each side of the wake to avoid any unphysical instantaneous symmetries,
and the free-stream velocity on each side was zero. Thus, the simulations represent a
temporally evolving approximation to the wake behind a zero-thickness flat plate at
zero angle of attack moving at velocity Ud with turbulent boundary layers.

To study the variability of plane wakes and their dependence on initial/upstream
conditions, the initial conditions described above were modified in two of the three
simulations presented here. To design appropriate modifications, we noted that several
experimental observations suggest that two-dimensional or nearly two-dimensional
disturbances are important in the evolution of a plane wake. These include the
observation of Kármán streets, which are nearly two-dimensional, even in highly
turbulent wakes, and the variation of the growth rate with different imposed two-
dimensional disturbances, as observed by Wygnanski et al. (1986). Furthermore, it
is not unreasonable to expect different bodies (e.g. a cylinder and a flat plate)
to introduce different two-dimensional disturbances into their wakes because the
geometry of the body affects the character of the oscillating, nearly two-dimensional
separation that occurs when the wake is generated. Finally, a flat-plate wake can be
influenced by acoustic and pressure disturbances that affect the vortical flow through
the receptivity of the plate’s trailing edge. Such disturbances are expected to have large
spanwise wavelengths and therefore produce nearly two-dimensional fluctuations.
Effects such as trailing-edge receptivity and the dynamics of separation from the wake
generator are not included in the boundary layer initial conditions described above.

Since the influence and evolution of the nearly two-dimensional disturbances dis-
cussed above are not well understood, and since such disturbances are apparently
important in turbulent plane wakes, the second and third simulations in this study
were designed to investigate the impact of two-dimensional disturbances. To this end,
the two-dimensional disturbances in the turbulent boundary layer initial conditions
were augmented. This is referred to here as ‘forcing’. However, it was necessary to
avoid the introduction of highly regular disturbances that might produce unrealisti-
cally organized structures in the evolved wake. Therefore, the forcing was introduced
by amplifying the streamwise and cross-stream components (u and v) of all the two-
dimensional modes in the turbulent boundary layer initial condition, producing an
uncontrolled two-dimensional disturbance without a characteristic streamwise wave-
length. These two-dimensional motions were amplified by a factor 5 in one case and
a factor 20 in the other. The two resulting flows are referred to as ‘weakly forced’ and
‘strongly forced’, respectively, in contrast to the ‘unforced’ case described above, in
which no additional disturbances were added to the initial boundary layer turbulence.

In the weakly forced case, the factor 5 increase in the amplitude of the two-
dimensional turbulence fluctuations might appear to be a large modification to the
initial condition. However, in the boundary layers, the two-dimensional disturbances
are so small that multiplying them by a factor 5 does not create a particularly large
disturbance. In particular, in the unforced initial conditions, the two-dimensional
modes constitute only 1.5% of the turbulent kinetic energy density (q2/2) at the point
of maximum q2. After amplification for the weakly forced initial condition, these
modes still account for just 25% of q2/2, and only 0.8% of the total flow energy
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(including that associated with the wake deficit). Thus the total energy in the flow has
not been significantly increased, and it is not unreasonable to expect that disturbances
of this magnitude could be introduced naturally at the trailing edge of the plate, or
by the wake body. Another way to gauge the strength of the forcing is by examining
its impact on the flow development. For the weakly forced wake, the growth rate is
within the range of experimentally observed wake growth rates for wakes with no
explicit forcing (see §3.2).

In contrast, the forcing level in the strongly forced flow is large, with the two-
dimensional disturbances accounting for 86% of the turbulent kinetic energy and
11% of the total flow energy. Thus in this case significant energy (0.7ṁUd per unit
plan area) has been added to the flow. The streamwise spectra of both the strongly
forced initial condition and the unforced initial condition are shown in figure 1(b).
Note the large magnitude and essentially broad-band nature of the spectrum of the
forcing. As a result of the strong forcing, the wake growth rate exceeds that of
even the periodically forced wakes of Wygnanski et al. (1986). In similar simulations
of a mixing layer (Rogers & Moser 1994), the amplification factor 20 was needed
to produce a significant change in the flow evolution. The wakes examined here
are apparently more sensitive to forcing (perhaps because the shear production of
turbulence in the wake decreases significantly as the wake velocity deficit decays,
whereas the velocity difference in the mixing layer remains constant). Even the ‘weak’
forcing was found to significantly affect the wake growth rate, whereas the same level
of forcing in the mixing layer had a minimal impact.

To achieve the relatively large Reynolds numbers of the computations, while at the
same time maintaining an adequate sample of large-scale eddies in the computational
domain, requires significant computational resources. The simulations described here
employed grids with up to 25 million modes (600× 260× 160) and required between
220 and 530 Cray YMP C-90 CPU hours each to complete.

3. Self-similarity and statistics
3.1. Similarity of single-point velocity moments

The temporally evolving plane wake is statistically homogeneous in both the stream-
wise and the spanwise directions (i.e. x- and z-directions), so the mean momentum
equation in deficit form is given by

∂δU

∂t
= −∂uv

∂y
+ ν

∂2δU

∂y2
(3.1)

where u and v are the streamwise (x) and cross-stream (y) velocity fluctuations
respectively, −δU = U∞ − U is the deficit velocity, and an overbar signifies the
expected value or average. Since it is generally accepted that plane wakes evolve at
constant Reynolds number, we anticipate that it will be possible to retain the viscous
terms in the analysis. This differs from the conventional approach (cf., Tennekes &
Lumley 1972), in which it is assumed that only high-Reynolds-number shear layers can
evolve self-similarly. Consistency of the scaling constraints arising from the viscous
terms with those from other terms will imply that finite Reynolds number wakes can
indeed evolve self-similarly. By integrating (3.1) across the layer, and assuming zero
free-stream turbulence, it is confirmed that the mass flux deficit∫ ∞

−∞
−δU dy = ṁ, (3.2)

is a constant.
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It is hypothesized that the mean momentum equations (3.1) and (3.2) for this flow
admit similarity solutions where the mean velocity profile and the Reynolds stress are
given by

δU = Us(t)f(η) (3.3)

and

uv = Rs(t)g(η), (3.4)

where η = y/δ(t) is the similarity coordinate. Here we follow the technique of George
(1989), choosing individual scales for each of the moments to avoid the possibility of
over-constraining the analysis. In particular, it is not assumed a priori that the scale
for the Reynolds stress uv is U2

s . This scale is determined instead by the constraints
imposed by the equations of motion.

A more general Lie group analysis has been carried out by Oberlack (M. Oberlack,
private communication) using the techniques described in Oberlack (1997). Oberlack’s
analysis produces the same similarity forms used here; thus, the forms developed here
are the only possible similarity forms for this flow.

Substituting the hypothesized similarity solutions into equations (3.1) and (3.2)
yields [

dUs

dt

]
f −

[
Us

δ

dδ

dt

]
η

df

dη
= −

[
Rs

δ

]
dg

dη
+ ν

[
Us

δ2

]
d2f

dη2
(3.5)

and

[Usδ]

∫ ∞
−∞
f(η)dη = −ṁ. (3.6)

The time-dependent portion of each term in (3.5) and (3.6) is contained in square
brackets (a convention that will be used throughout this similarity analysis). Thus, the
hypothesized similarity solutions are consistent with the mean momentum equations
if

[Usδ] ∝ ṁ (3.7)

and [
dUs

dt

]
∝
[
Us

δ

dδ

dt

]
∝
[
Rs

δ

]
∝
[
Us

δ2

]
, (3.8)

assuming, of course, that none of these terms is zero or negligible. It is straightforward
to demonstrate that these constraints are only satisfied when

Us ∝
1

δ
, (3.9)

dδ2

dt
= constant, (3.10)

and

Rs ∝ Us

dδ

dt
. (3.11)

Thus, when the flow evolves in a manner consistent with a similarity solution, it
follows that

δ ∝ (t− to)1/2, Us ∝ (t− to)−1/2 and Rs ∝ (t− to)−1, (3.12)

where to is some virtual origin. Note that it was the viscous term that imposed the
constraint leading to (3.10). If the viscous term were neglected (i.e. infinite Reynolds
number), the growth of the layer would be undetermined at this point.
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Following the methodology outlined by George (1994), the similarity analysis can
also be applied to the equations governing the evolution of the individual Reynolds
stress components. The transport equations for Reynolds stress components in the
temporally evolving plane wake are given by

∂u2

∂t
= −2uv

∂δU

∂y
− ∂u2v

∂y
+ 2

p

ρ

∂u

∂x
+ ν

∂2u2

∂y2
− εuu, (3.13a)

∂v2

∂t
= −∂v

3

∂y
+ 2

p

ρ

∂v

∂y
− 2

ρ

∂pv

∂y
+ ν

∂2v2

∂y2
− εvv, (3.13b)

∂w2

∂t
= −∂w

2v

∂y
+ 2

p

ρ

∂w

∂z
+ ν

∂2w2

∂y2
− εww, (3.13c)

and
∂uv

∂t
= −v2

∂δU

∂y
− ∂uv2

∂y
+
p

ρ

(
∂u

∂y
+
∂v

∂x

)
− 1

ρ

∂pu

∂y
+ ν

∂2uv

∂y2
− εuv, (3.13d)

where p is the fluctuating pressure, ρ is the density, and εij are the dissipation-rate

terms 2ν(∂ui/∂xl)(∂uj/∂xl). For example, εuu is given by

εuu = 2ν

{(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂u

∂z

)2
}
. (3.14)

Finally, due to incompressibility, the pressure–strain terms in the normal stress equa-
tions must sum to zero

p

ρ

∂u

∂x
+
p

ρ

∂v

∂y
+
p

ρ

∂w

∂z
= 0. (3.15)

As was done for the mean equation, it is hypothesized that similarity solutions
exist for the new moments in the Reynolds stress equations. For example, in the u2

equation the solutions are

u2 = Ku(t)ku(η), (3.16a)

u2v = Ttu(t)ttu(η), (3.16b)

p

ρ

∂u

∂x
= Πu(t)πu(η), (3.16c)

and
εuu = Du(t)du(η). (3.16d)

The assumed solutions for the other terms in the equations are given in the second
column of table 1.

Substituting the hypothesized forms of the similarity solutions (and those defined
previously) into (3.13) yields[

dKu

dt

]
ku −

[
Ku

δ

dδ

dt

]
η

dku
dη

= −2

[
RsUs

δ

]
g

df

dη
−
[
Ttu

δ

]
dttu
dη

+ 2 [Πu] πu

+ν

[
Ku

δ2

]
d2ku

dη2
− [Du] du, (3.17)

where again the time-dependent portion of each term is contained in square brackets.
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Similarity Scaling for
Term Form conditions (3.25)

δU Us(t)f(η) Us ∝
1

δ

u2 Ku(t)ku(η) Ku ∝ U2
s Ku = U2

s β

v2 Kv(t)kv(η) Kv ∝ U2
s Kv = U2

s β
2

w2 Kw(t)kw(η) Kw ∝ U2
s Kw = U2

s β

uv Rs(t)g(η) Rs ∝ Us

dδ

dt
Rs = U2

s β

p

ρ

∂u

∂x
Πu(t)πu(η) Πu ∝

U2
s

δ

dδ

dt
Πu =

U3
s β

2

δ

p

ρ

∂v

∂y
Πv(t)πv(η) Πv ∝

U2
s

δ

dδ

dt
Πv =

U3
s β

2

δ

p

ρ

∂w

∂z
Πw(t)πw(η) Πw ∝

U2
s

δ

dδ

dt
Πw =

U3
s β

2

δ

p

ρ

(
∂u

∂y
+
∂v

∂x

)
Πuv(t)πuv(η) Πuv ∝

Us

δ

(
dδ

dt

)2

Πuv =
U3
s β

2

δ

u2v T tu(t)ttu(η) Ttu ∝ U2
s

dδ

dt
T tu = U3

s β
2

v3 Ttv(t)ttv(η) Ttv ∝ U2
s

dδ

dt
T tv = U3

s β
3

w2v T tw(t)ttw(η) Ttw ∝ U2
s

dδ

dt
T tw = U3

s β
2

uv2 Ttuv(t)ttuv(η) Ttuv ∝ Us

(
dδ

dt

)2

Ttuv = U3
s β

2

pv

ρ
P tv(t)ptv(η) Ptv ∝ U2

s

dδ

dt
P tv = U3

s β
3

pu

ρ
P tuv(t)ptuv(η) Ptuv ∝ Us

(
dδ

dt

)2

Ptuv = U3
s β

3

εuu Du(t)du(η) Du ∝
U2
s

δ

dδ

dt
Du =

U3
s β

2

δ

εvv Dv(t)dv(η) Dv ∝
U2
s

δ

dδ

dt
Dv =

U3
s β

2

δ

εww Dw(t)dw(η) Dw ∝
U2
s

δ

dδ

dt
Dw =

U3
s β

2

δ

εuv Duv(t)duv(η) Duv ∝
U2
s

δ

dδ

dt
Duv =

U3
s β

δ

Table 1. Similarity forms for terms in the mean and Reynolds stress equations
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The other equations are analogous. If the time-dependence of the coefficients in
brackets is identical, then the equations admit similarity solutions of the form given
in table 1. Thus for a similarity solution, it is sufficient that[

dKu

dt

]
∝
[
Ku

δ

dδ

dt

]
∝
[
RsUs

δ

]
∝
[
Ttu

δ

]
∝ [Πu] ∝

[
Ku

δ2

]
∝ [Du] , (3.18a)

[
dKv

dt

]
∝
[
Kv

δ

dδ

dt

]
∝
[
Ttv

δ

]
∝ [Πv] ∝

[
Ptv

δ

]
∝
[
Kv

δ2

]
∝ [Dv] , (3.18b)[

dKw

dt

]
∝
[
Kw

δ

dδ

dt

]
∝
[
Ttw

δ

]
∝ [Πw] ∝

[
Kw

δ2

]
∝ [Dw] , (3.18c)[

dRs
dt

]
∝
[
Rs

δ

dδ

dt

]
∝
[
KvUs

δ

]
∝
[
Ttuv

δ

]
∝ [Πuv] ∝

[
Ptuv

δ

]
∝
[
Rs

δ2

]
∝ [Duv] ,

(3.18d)
and

[Πu] ∝ [Πv] ∝ [Πw] , (3.18e)

where the last condition arises from the requirement that the pressure–strain terms
sum to zero, (3.15). Although the conditions (3.18a)–(3.18e) are sufficient for self-
similarity they are not necessary. In theory, groups of terms in the equations could
balance and scale independently. However, without any further physical insight as to
why this might happen (and for which groups of terms), these solutions could only
be found using empirical techniques.

It is clear that the constraints in (3.18a) are satisfied if the scales for the terms in
the normal stress u2 equation are chosen such that

Ku ∝ U2
s , (3.19)

Ttu ∝ U2
s

dδ

dt
, (3.20)

and

Πu ∝ Du ∝
U2
s

δ

dδ

dt
. (3.21)

Similarly, the other Reynolds stress transport equations admit self-similar solutions
when the scales are given as in the third column of table 1. Note that the similarity
conditions for the Reynolds shear stress equation (3.18d) and the scalings in table 1
require that [

Rs

δ

dδ

dt

]
∝
[
KvUs

δ

]
⇒
(

dδ

dt

)2

∝ U2
s , (3.22)

which using (3.9) implies that

dδ2

dt
= constant, (3.23)

in agreement with the result from the analysis of the mean momentum equation
(3.10). Thus, the constraints imposed by retaining the viscous terms in the momentum
equation are consistent with those deduced from the equations for the Reynolds
stresses, indicating that self-similar solutions can exist for wakes at all Reynolds
numbers.

The similarity requirements outlined above only require that the time-dependent
portions of the solutions are proportional to the given scales. As George (1989)
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argued, the value of the constants of proportionality may depend on the initial (or
source) conditions of the flow. This dependence is expressed in terms of a number
of non-dimensional constants. The most important, in this case, is the ratio of the
two different velocity scales used in the analysis: Us, a convective velocity scale, and
dδ/dt, a characteristic velocity scale for the growth rate of the layer. This ratio

β =
1

Us

dδ

dt
=

1

2Usδ

dδ2

dt
= − δ

U2
s

dUs

dt
(3.24)

is a constant in a self-similar wake from (3.9) and (3.23) and is a non-dimensional
measure of the growth rate of the layer. Note that this ratio can also be interpreted
as the ratio of a convective time scale and a time scale characteristic of the spreading
rate of the flow. This interpretation is useful in the analysis of the moments involving
velocities at two times that will be discussed elsewhere.

For example, using the scaling in the fourth column of table 1, the resulting
governing equations for the similarity profiles are given by∫ ∞

−∞
f(η)dη =

−ṁ
Usδ

, (3.25a)

−dηf

dη
= −dg

dη
+

1

Reδβ

d2f

dη2
, (3.25b)

−2ku − η
dku
dη

= −
{

1

β

}
2g

df

dη
− dttu

dη
+ 2πu +

1

Reδβ

d2ku

dη2
− du, (3.25c)

−2kv − η
dkv
dη

= −dttv
dη

+

{
1

β

}
2πv − 2

dptv
dη

+
1

Reδβ

d2kv

dη2
−
{

1

β

}
dv, (3.25d)

−2kw − η
dkw
dη

= −dttw
dη

+ 2πw +
1

Reδβ

d2kw

dη2
− dw, (3.25e)

−2g − ηdg

dη
= −kv

df

dη
− dttuv

dη
+ πuv − {β}

dptuv
dη

+
1

Reδβ

d2g

dη2
−
{

1

β

}
duv, (3.25f)

and
πu + πv + πw = 0, (3.25g)

where Reδ = Usδ/ν is the Reynolds number. Note that these equations include only
three non-dimensional constants: the shape factor Usδ/ṁ, the Reynolds-number Reδ
and the growth rate β. It is commonly assumed, as in many other turbulent flows,
that for large Reδ , the similarity profiles will become Reynolds-number independent
(i.e. there is a regular limit as Re→ ∞). Note, however, that equations (3.25) suggest
that it is Reδβ, the Reynolds number based on dδ/dt that must be large. It has also
been observed that well-developed wakes all have essentially the same mean velocity
profile, thus the shape factor Usδ/ṁ is universal. It is only β that could vary from
wake to wake, depending on the details of how it is created or initialized.

Other authors have used different parameters to characterize wake similarity states.
In particular, Sreenivasan & Narasimha (1982) used the parameters defined by Prabhu
& Narasimha (1972), which in the context of the current time-developing analysis are
given by W = Us((t− t0)/ṁ)1/2 and ∆ = δ((t− t0)ṁ)1/2, where t0 is a virtual origin
for time. It is easily shown that in a self-similar wake, parameterization with W and
∆ is equivalent to parameterization with β and Usδ/ṁ, and that

β =
∆

W
and

δUs

ṁ
= W∆. (3.26)



Self-similarity of plane wakes 265

Note that in Prabhu & Narasimha (1972), ∆ is defined with δ equal to half the
half-width defined in §3.2. The shape factor and β are used here instead because they
arise naturally in the above analysis and they do not require explicit determination of
t0. Furthermore, when similarity breaks down, the parameters are not equivalent, and
∆/W is a particularly poor indicator of this breakdown. The assertion of Sreenivasan
& Narasimha (1982) that ∆ and W are universal is here seen to be equivalent to
a statement that β and Usδ/ṁ are universal. The similarity analysis clearly neither
requires or precludes this.

If a scaling could be chosen that would eliminate all the β-dependent coefficients in
the profile equations, then the plane wake would admit a family of self-similar states
with different growth rates but identical similarity profiles (when properly scaled).
However, in this case it is not possible to remove the β coefficients from all of the
terms in the stress equations or the pressure–strain balance regardless of what factors
of β are chosen for the individual scales. That this is true can be easily seen by
considering the following chain of scaling requirements that attempt to eliminate β
factors from the equations.

(a) No β on the Reynolds stress term in the mean equation implies Rs ∼ U2
s β.

(b) No β on the u2 production term or the u2 time derivative term implies Ku ∼ U2
s .

(c) No β in the balance of the pressure–strain terms implies that all the diagonal
pressure–strain scales (i.e. Πu, Πv and Πw) have the same β scaling.

(d) No β on the pressure–strain or time-derivative terms in the u2, v2, and w2

equations implies that Ku, Kv , and Kw have the same β factor, and in particular
Kv ∼ U2

s .
(e) No β on the uv time-derivative or uv production terms implies Rs ∼ U2

s /β.
Item (e) contradicts item (a), demonstrating that it is not possible to eliminate β factors
from the similarity form of the Reynolds stress equations. Furthermore, although the
growth rate dependence may only appear in one or a few of the equations, the
equations are coupled so the growth-rate dependence can in principle affect all the
profiles. As a result, the shape of at least some of the similarity profiles for the
single-point moments must differ for wakes with different normalized growth rates.

The most appropriate choice for the scale factors can be found by examining data
from wakes with different growth rates. Such wakes necessarily have different self-
similar profiles, but certain scalings may be able to minimize the differences in the
overall magnitude of the profiles. The particular scalings given in the fourth column
of table 1 were selected with guidance from the DNS data (§3.2) and represent the
scalings that minimize the gross magnitude variations among the profiles for the three
simulated wakes. Use of these scalings results in more factors of β in the profile
equations than the minimum possible.

Note that scaling the Reynolds shear stress with U2
s β has resulted in a mean

velocity equation (3.25b) without explicit growth-rate dependence. Thus, if wakes
with different growth rates have universal mean velocity profiles as is observed both
in experiments (Wygnanski et al. 1986) and the current numerical simulations (§3.2),
then the Reynolds stress profile scaled in this way must also be universal. Indeed, this
was the major motivation for scaling uv with U2

s β. It is curious that the Reynolds
shear stress profile is universal while the uv stress equation has explicit β-dependence.
Apparently, the non-universality of profiles for the terms of this equation cancel when
they are added together. It is possible to choose β scalings that result in no explicit
β dependence in the uv equation, but these do not agree with the simulation data.

It is evident from the above analysis that the governing equations for the Reynolds
stresses in the time-developing wake admit similarity solutions, provided that the



266 R. D. Moser, M. M. Rogers and D. W. Ewing

assumed forms of the higher-order quantities (e.g. the pressure–strain terms, the
transport terms, and the dissipation) are allowed. It is not possible to verify this in
the context of the current analysis due to the closure problem. However, using a more
general technique based on Lie groups, Oberlack (1997) has shown that similarity
of the second moments for flows with these similarity variables implies similarity of
the higher-order quantities. Of course, the analysis only confirms that the solutions
are possible and does not imply that they must occur in reality. Thus in order to
determine whether the hypothesized solutions are a good description of an actual flow
it is necessary to test the predictions of the theory with experimental or simulated
flow data.

3.2. Comparison with the simulations

In this subsection, the simulations described in §2 are examined to determine whether
the similarity described in §3.1 is achieved. Formally the time-developing plane wake
can only be self-similar if the streamwise and spanwise domain sizes are infinite.
Otherwise, the finite domain size would introduce a physical length scale (other than
a characteristic wake thickness), which results in a loss of self-similarity. Of course
the simulations performed here have finite streamwise and spanwise domain sizes,
which means that if approximate self-similarity is to be achieved, the domain size
must be much larger than the largest scales of the turbulence, so that the evolution of
the turbulence will not be affected by the finite domain. As the size of the turbulent
eddies grows in time, the infinite-domain approximation breaks down and results
in the loss of similarity at late times in the simulations. All evidence suggests that
this finite domain-size effect is indeed responsible for the eventual loss of similarity
observed in all the simulations reported below. During the self-similar period of
the simulations, the finite-domain simulation is used as an approximation of the
infinite-domain self-similar wake.

In applying the similarity analysis to the simulated wakes, any number of different
thickness measures (δ) and velocity scales (Us) could be used. To facilitate comparison
to previous experimental data, we will use the maximum magnitude of the velocity
deficit (U0) and the half-width b, which is defined to be the distance between the
y-locations at which the mean velocity is half of U0 (note that some investigators
take the half-width to be half this distance).

Shown in figure 2 is the time evolution of b2 and U−2
0 for all three simulations

plotted against the dimensionless time τ = tU2
d/ṁ. Both these quantities should evolve

linearly during the self-similar period as required by (3.9) and (3.10), and indeed in
the unforced and weakly forced flows both have substantial periods of linear growth.
The growth rate can be characterized by the non-dimensional growth, β (see §3.1),
which when based on U0 and b is given by

β =
1

U0

db

dt
. (3.27)

In the unforced and weakly forced flows, β = 0.12 and 0.21, respectively, during the
self-similar period. The analogous growth rate parameter in a spatially developing
wake is β = (U∞/U0)(db/dx), which was 0.18 in the experiments of Weygandt &
Mehta (1995) and ranged from 0.15 to 0.21 in the unforced experiments of Wygnanski
et al. (1986). Thus the unforced and weakly forced growth rates cover the range of
these experimental growth rates for ‘natural’ wakes. The marked effect of the forcing
on the growth rate suggests an explanation for the low growth rate of the unforced
case compared to the experiments: it seems likely that the initial conditions for the
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Figure 2. Evolution of (a) (bUd/ṁ)2, (b) (Ud/U0)2, (c) bU0/ṁ, and (d) E/(U3
0β

2) in the ,
unforced; , weakly forced; , strongly forced DNS; and , strongly forced LES
wake simulations. The strongly forced LES was performed by Ghosal & Rogers (1997) in a spatial
domain that is four times larger than the DNS in the spanwise direction and twice as large in the
streamwise direction.

unforced case have less large-scale, nearly two-dimensional disturbance energy than
is present in most experiments. As discussed in §2, this is expected due to the absence
of a splitter plate tip (or other wake generator) in the time-developing simulations.

Unlike the other two cases, the strongly forced case has no extended period of
self-similar growth, although there are short periods during which b2 and/or U−2

0

vary linearly. The period that most closely approaches self-similarity in the strongly
forced case occurs from about τ = 40 to τ = 58. Here bU0 (figure 2c) appears to
be reaching a plateau, indicating that b and U0 are evolving together. At this time,
β = 0.58, which is larger than the highest forced growth rate observed by Wygnanski
et al. (1986) (β = 0.29). Furthermore, it is only during this period that the statistical
profiles discussed below are roughly consistent with self-similarity.

Finally, it is likely that the reason the similarity period ends in these flows is
that the turbulence structures become too large for the finite spatial domain. To
test this hypothesis, Ghosal & Rogers (1997) performed a large-eddy simulation
(LES) of the strongly forced wake in a much larger spatial domain. The results of this
simulation are also shown in figure 2. Due to the impossibility of using identical initial
conditions and the uncertainties of LES, some departure from the small-domain DNS
is expected, even at early times when the domain size is not an issue. However, it is
remarkable that the LES exhibits an extended period of apparent self-similarity with
approximately the same growth rate as that identified during the ‘similarity period’
of the strongly forced DNS.

Another global quantity that can be examined for evidence of self-similarity is

E =

∫ ∞
−∞
ε dy =

∫ ∞
−∞

1
2
(εuu + εvv + εww) dy, (3.28)
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unforced and (d) weakly forced wakes, in scaled coordinates at four times during the self-similar
period. Profiles from the unforced and weakly forced wakes were taken at , τ = 42.8 and 64.6;

, τ = 56.6 and 83.1; , τ = 71.7 and 105.6; and , τ = 91.5 and 120.9, respectively.

the integrated rate of kinetic energy dissipation (ε = 2νSijSij , where Sij is the strain-rate
tensor and ν is the kinematic viscosity). Note that because the flow is inhomogeneous
in y, ε 6= (εuu + εvv + εww)/2. However, the integral relation in equation (3.28) does
hold. According to the scaling in table 1, the integrated dissipation rate should scale
with U3

0β
2. Thus E/(U3

0β
2) should be a constant during self-similarity. In figure 2(d),

it is shown that E/(U3
0β

2) is indeed approximately constant for 40 6 τ 6 90 in the
unforced case and for τ > 65 in the weakly forced case. There is little evidence of self-
similarity in the dissipation-rate evolution in the strongly forced case, although again
E/(U3

0β
2) is approximately constant for 40 < τ < 60. This parameter is apparently

a very sensitive indicator of similarity, which has not been previously examined due
to the inaccessibility of the dissipation from experiments. Note that the scaling with
U3

0β
2 has eliminated most of the variation in the magnitude of E among the different

wakes. Compare the variation between the curves in figure 2(d) to the factor 23
variation of β2 among the three wakes.

The self-similarity of the unforced and weakly forced flows is further supported
by the collapse of the mean velocity and Reynolds stress profiles when plotted in
similarity coordinates. Shown in figure 3 are the mean velocity and streamwise velocity
variance at four times, approximately equally spaced through the self-similar period,
in both the unforced and weakly forced flows. The collapse of these curves in the
unforced flow is good. In the weakly forced flow, there is more variation among
the curves, especially for the mean velocity. This, however, may be a result of the
inadequate statistical sample of the largest scales, which are larger in the forced cases.
Profiles from times outside of the self-similar periods (not shown) do not collapse
nearly as well. As in the mixing layer simulations in Rogers & Moser (1994), the
breakdown of self-similarity at late times appears to occur because the finite size
of the computational domain begins to affect the dynamics of the largest scales of
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experiments of Weygandt & Mehta (1995).

motion in the flow. In the strongly forced flow, the mean and variance profiles also
collapse fairly well during the brief approximately self-similar period (40 6 τ 6 58).

It is evident from the favourable comparison of the predictions of the hypothesis
and the data (especially the collapse of the mean velocity and Reynolds stresses) that
the evolution of individual simulations are self-similar during a finite time interval. By
examining all the measures of self-similarity presented in this section, especially the
collapse of the mean velocity and Reynolds stress profiles discussed above, periods of
self-similarity have been defined for each of the three simulated wake flows. For the
unforced wake, the period of self-similarity has been determined to be 42.8 < τ < 91.5
and the value of β based on the wake growth rate during this period is 0.12. For the
weakly forced wake, self-similarity is achieved during 64.5 < τ < 120.9 and β = 0.21.
For the strongly forced case, a brief period of approximate self-similarity is found
when 39.9 < τ < 58.3, during which β = 0.58. These time intervals are used to
generate the time-averaged profiles presented later in this paper. The precisely quoted
time limits given above correspond to the times of saved restart files from each
simulation. In reality the approach and departure from self-similarity is fairly gradual
and deciding which fields are within the self-similar period is somewhat subjective.

3.3. Comparing different wakes

Since the statistical quantities collapse in similarity coordinates, they can also be
averaged in time over the self-similar period to reduce the statistical noise in the
profiles. The profiles from the two sides of the wake are also averaged since they are
all statistically symmetric or antisymmetric about the centreline. The results of such
averaging are shown in figures 4 and 5 for the mean velocity and Reynolds stress
components, respectively. Also shown are the data from Weygandt & Mehta (1995).
The Reynolds stress components have been scaled in the conventional way with U2

0 .
The agreement between the mean velocity profiles from the experimental and the

unforced and weakly forced computations is very good. However, the mean profile
from the strongly forced flow does not agree as well, nor is it as smooth. This is
presumably because the simulations provide a poor statistical sample of the large
structures that dominate the forced flow (see §4).

As can be seen in figure 5, the conventional scaling of the Reynolds stresses does
not collapse the data from various wakes. There is a marked increase in magnitude of
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all Reynolds stress components with increasing forcing level, with the experimental
data generally falling between the unforced and weakly forced flows. The Reynolds
stress levels in the strongly forced case are nearly an order of magnitude larger than
those of the unforced case when scaled in this way. Clearly, this common scaling does
not allow data from wakes with different growth rates to be effectively compared.

As indicated by the analysis in §3.1, it may be possible to collapse the different
Reynolds stress profiles by including factors, or more generally functions, of the
dimensionless growth rate β in the scaling. The simulation data can be used to
determine the appropriate factors of β to include in the scaling to achieve the best
overall collapse of the profiles. By using U2

0β and U2
0β

2 to normalize the Reynolds
stress profiles, it is possible to obtain approximate collapse of the different wake data,
as shown in figure 6. Note that because the self-similarity is less well established in
the strongly forced case, less weight should be put on achieving collapse for this case
when choosing the appropriate powers of β in the scalings. The selected scalings,
which minimize the variation of the similarity profiles among the different wakes,
have been listed in the fourth column of table 1.

The choice of the scaling for the Reynolds shear stress is also motivated by the
observation that the mean velocity profiles collapse (figure 4), which implies that
the shear stress profiles should collapse with the U2

0β scaling (see §3.1). Indeed, in
figure 6(d), the Reynolds shear stress profiles of the unforced and weakly forced
wakes collapse with the experiments from Weygandt & Mehta (1995). The Reynolds
stress profile for the strongly forced wake does not collapse as well with the others,
which is consistent with the poorer collapse of the mean profile. Note that the scatter
between the scaled Reynolds shear stress curves is greater than that among the
scaled mean profiles. The viscous terms in the mean momentum equation are indeed
small, and this slightly poorer collapse is a result of imperfect self-similarity. For the
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normal stress components, the scaled magnitudes are more or less consistent among
the different wakes, but the profile shapes are not. This is to be expected given
the growth-rate dependence of the similarity equations (3.25). A similar variation in
the shapes of the u2 profiles in different wakes was reported in Wygnanski et al.
(1986).

A similar procedure can be carried out for each of the terms in the Reynolds stress
transport equations. Shown in figure 7 are examples of the results of this scaling.
Keeping in mind that the goal of the scaling is to eliminate the gross variations
in magnitude among the three simulated wakes, it is apparent that the selected
growth-rate scaling has succeeded for the u2 production and dissipation and the v2

pressure–strain (figures 7a, b and c). This is not surprising for the production since
it is just the product of the Reynolds shear stress and the mean velocity gradient,
both of which are universal or near universal (see figures 4 and 6 and §3.1). The large
peak in the strongly forced curve is due to the poorer collapse of uv and δU for the
strongly forced case (see figure 6).

The time derivative of uv (figure 7d), however, is not as well scaled. There is a
systematic increase in the magnitude of the curves with forcing level that could be
eliminated by scaling with β3 rather than β2. But scaling uv with β (see table 1) implies
the β2 scaling for the time derivative. In fact, if the uv profile is universal as argued
previously, then its time derivative should also be universal when scaled with β2. The
poor quality of the scaling for the time derivative suggests a lack of statistical sample
and/or imperfect self-similarity in one or more of the simulated wakes (perhaps this
is also responsible for the imperfect collapse of the Reynolds shear stress profiles).

In figure 7(e), the uv pressure diffusion magnitudes have been nicely scaled using
U3

0β
3, although a β2 scaling would have been more pleasing as it would have removed
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term, (d) time derivative of uv, (e) pressure diffusion of uv, and ( f ) turbulent diffusion of uv.

a β factor from the profile equation (3.25). There is also a large qualitative difference
between the pressure diffusion curves and it is not clear what this implies. Finally,
examining the turbulent diffusion of uv profiles (figure 7 f ), the unforced and weakly
forced profiles scale well, and are qualitatively similar. However, the profile from the
strongly forced flow is qualitatively different and much larger in magnitude. Since self-
similarity in the strongly forced wake is suspect, the scaling for the turbulent diffusion
was selected to bring the unforced and weakly forced cases together, without regard
to the strongly forced wake. Note that similar plots for the other terms in the
Reynolds stress balance have been used to obtain the scalings for these terms, which
are summarized in column 4 of table 1 (§2).

3.4. The role of two-dimensional fluctuations

As discussed in §2, the difference between the three simulated wakes discussed in
this paper is that the ‘forced’ simulations had amplified two-dimensional fluctuations
in the initial conditions. Since this has produced such dramatic differences in the
turbulence statistics and particularly the growth rate, the direct contribution of the
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two-dimensional fluctuations to the various statistics is of great interest. However,
when considering the two-dimensional contribution to a self-similar plane wake a
conceptual problem is encountered.

As pointed out in §3.2, the simulations can only model a self-similar time-developing
wake of infinite streamwise and spanwise extent if the turbulence scales are signif-
icantly smaller than the domain size. It is this difference between the finite-domain
computation and the infinite-domain flow that causes a problem in defining the contri-
bution of two-dimensional perturbations. In the computations, the two-dimensional
fluctuations are well defined as the average over the spanwise domain, which has
length Lz . If Lz is allowed to go to infinity, this average (of the velocity say) will

go to zero like L
−1/2
z unless there are spanwise-coherent fluctuations with infinite

correlation length. In a truly turbulent flow such extreme spanwise coherence is not
expected. Even the coherent structures common in free-shear flows become uncor-
related in the span at large enough separations, as suggested by the occurrence of
dislocations in such structures as reported by Browand & Troutt (1980). Thus, the
contribution of the two-dimensional fluctuations to the energy density or any other
quadratic quantity should go to zero like 1/Lz . Such box-size-dependent measures
of two-dimensionality are clearly not useful when investigating the relative impor-
tance of spanwise-coherent ‘two-dimensional’ fluctuations. Indeed, if this subtlety had
been fully recognized sooner, the ‘forced’ initial conditions might have been designed
differently.

To address this problem it is necessary to reconsider our intentions in studying
‘two-dimensional’ fluctuations. In the current context, the interest is in fluctuations
with a large spanwise spatial coherence. One way to define such fluctuations would
be to apply a spanwise low-pass spatial filter with some filter width Lf; the resulting
field would be approximately two-dimensional provided Lf was large compared to
the integral scale of the turbulence. The finite-domain spanwise average used in the
simulations is an approximation of this, with Lz playing the role of Lf . However,
the introduction of a filter width complicates the expected self-similar behaviour of
the statistics of the spanwise filtered field. Consider the filtered contribution q2

f to q2

(twice the energy density), which must go like 1/Lf . Thus, for a self-similar flow, in
which the two-point statistics are also similar (Ewing 1995; Ewing et al. 1998),

q2
f ∝

U2
0b

Lf
, (3.29)

while the total q2 evolves like U2
0 . Therefore the ratio q2

f/q
2 will grow like b, the

wake thickness, unless the filter width is also time dependent. Unfortunately, the
computational domain width Lz cannot be time dependent. For the spanwise-coherent
contribution to be useful in the analysis to follow, such ratios should not evolve in
time.

Another way to define the spanwise-coherent fluctuations is as those fluctuations
with a spanwise to streamwise aspect ratio (α) greater than some cutoff αf . This is
most easily accomplished by considering the Fourier representation of the velocity in
the streamwise and spanwise directions (as is done in the numerical simulations), and
defining the spanwise-coherent fluctuations as those associated with Fourier modes
with kx > αfkz , where kx and kz are the streamwise and spanwise wavenumbers,
respectively. Since this definition is based on an aspect ratio rather than a filter
width, q2

c /q
2 should be a constant in a self-similar wake (the subscript c denotes

the contribution of spanwise-coherent fluctuations defined this way), and the same
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Figure 8. Evolution of the ratio of the cross-stream integrated spanwise coherent (αf = 4) contri-
bution q2

c to the total cross-stream integrated q2 in the , unforced; , weakly forced;
and , strongly forced wake simulations.

will be true for other quadratic quantities. Because of this desirable property, this
aspect ratio definition will be used to study the contribution of spanwise-coherent
fluctuations. Several different values for αf between 2 and 8 have been tried, with little
qualitative difference in the results. Thus, only the results with αf = 4 are presented
here.

The evolution of the ratio Q2
c/Q

2, where Q2
c and Q2 are integrals of the coherent and

total (respectively) q2 across the wake, is shown in figure 8 for the three simulations.
It is interesting that the proportion of coherent energy continues to rise throughout
the self-similar period in the unforced wake, suggesting that the unforced wake is not
exactly self-similar after all. In contrast, in the weakly forced wake this ratio does
become constant at around τ = 100. For the strongly forced flow Q2

c/Q
2 appears

to be approaching approximately the same value as in the weakly forced flow. It is
possible that the unforced flow would also ultimately reach the same value of this
ratio, although this is far from certain. Thus, it might be possible that there is a
universal value for the ratio of spanwise-coherent energy to total energy (for a given
αf) in a truly self-similar wake. Note that this would not imply that other quantities
must be universal, indeed the growth rates and many other quantities as well as the
structure (see §4) of the weakly and strongly forced wakes differ.

In both the unforced and weakly forced flows, the Reynolds stress component with
the worst collapse is v2 (see figure 9a, c). Throughout the self-similar period in both
flows, there is a monotonic increase of the scaled v2 profile. However, when the v2

c

contribution is removed (figure 9b, d), the curves collapse very well. This is consistent
with the Q2

c/Q
2 evolution for the unforced case. In the weakly forced flow, Q2

c/Q
2

plateaus only toward the end of the self-similar period as shown in figure 8, and since
v2 does not dominate q2, it is possible for this lack of structural self-similarity to be
more pronounced in v2 than in q2. In any case, it is clear that the spanwise-coherent
fluctuations are not yet completely self-similar in these flows, and this may contribute
to a variety of minor inconsistencies in the self-similarity as discussed in the previous
sections. It is likely that any lack of similarity in the spanwise-coherent fluctuations
is caused by the finite domain size, as an analysis of this data by McIlwain, Ewing
& Pollard (1997) indicates that the fluctuations with the largest spanwise scale are
responsible.
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c)/U
2
0 in the (a,b) unforced and (c,d) weakly

forced wakes. Profiles from the unforced and weakly forced wakes were taken at at , τ = 42.8
and 64.5; , τ = 51.0 and 73.6; , τ = 62.4 and 86.6; , τ = 74.9 and 105.6; and

, τ = 91.5 and 120.9, respectively.

It was noted in §3.3 that the Reynolds stress components had vastly different
magnitudes among the three wakes, and that this could largely be scaled out using
the growth rate β. These large differences are at least in part due to the contribution
of the spanwise-coherent fluctuations. Shown in figure 10 are the averaged u2 and v2

profiles (without the β scaling) along with the profiles with the u2
c and v2

c contributions
removed. Removing the coherent contribution greatly decreases the variation among
the different wakes. In fact, if the selection of the β scaling discussed in §3.1 were
based on v2 − v2

c a factor of β rather than β2 would have been chosen. For u2 − u2
c

and w2 − w2
c the best collapse still results from the β scaling used in §3.1, but for

uv − uvc there are no factors β required to account for magnitude variation among
the flows. Thus, much of the non-universality of the self-similar state seems to be
linked to the large-scale structures as suggested by George (1989). The fact that
the spanwise-incoherent fluctuations (which are expected to dominate the dissipation)
yield lower powers of β in the scalings than the total v2 and uv is probably responsible
for the ‘inconvenient’ scaling of the εvv and εuv terms that result in the 1/β coefficient
appearing on dv and duv in (3.25d) and (3.25 f ).

3.5. Other statistics

In addition to velocity and Reynolds stress statistics, vorticity statistics can be obtained
from the simulations. As in Rogers & Moser (1994), the scaling of E with U3

0 implies
that the vorticity variances should scale like RebU

2
0/b

2, where Reb = U0b/ν. However,
since Reb is a constant in the self-similar wakes studied here, the Reynolds number
factor would only be important when comparing wakes at different Reynolds numbers.
As an example, the vorticity variances averaged over the self-similar period in the
unforced flow are shown in figure 11. The relative magnitudes of the variances of
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the vorticity components are in general agreement with those found in previous
computations of homogeneous shear flows (Rogers & Moin 1987) and plane mixing
layers (Rogers & Moser 1994).

The time averages of the terms in the balance equation for q2 over the self-similar
periods of the unforced and weakly forced wakes are shown in figure 12. Note that
the balances for the individual normal Reynolds stress components and the Reynolds
shear stress are given in Appendix A, along with the definitions of the balance terms.
The balance for the strongly forced case is not included because the self-similarity in
this case is less well established and of short duration. Since the shear is zero at the
centre of the wake, the production is zero there. Production of q2 thus peaks in the
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maximum shear region and q2 is transported away by turbulent diffusion. Pressure
diffusion provides transport of q2 to the centre of the wake, although in the unforced
case this transport is rather small and it is the turbulent diffusion that is primarily
responsible for transport to the wake centreline. The transport of q2 by turbulent
diffusion to the edge of the wake causes nearly all of the growth in the width of
the q2 profile. The negative time derivative near the centre of the wake produces the
t−1 decay in the maximum q2, and the growth in the width of the turbulent region
is reflected in the positive time derivative at the edge of the wake. The overall level
of the curves in figure 12(b) is larger than that in figure 12(a) because the increase
associated with the larger growth rate β has not been scaled out as it was in in
figure 7 (note table 1 indicates that different powers of β are required to compare
different terms in the balance).

For a self-similar wake the time derivative can be computed directly from the
q2 = U2

0h(η) profile (η = y/b), with the result

b

U3
0

∂q2

∂t
= −β(2h+ ηh′). (3.30)

Using the unforced case as an example, at the centreline h = q2/U2
0 is 0.12 and

β = 0.12, resulting in a centreline value of the time derivative of 0.029. This is
somewhat larger than the value (0.023) computed from the simulation data and
plotted in figure 12. The discrepancy is a measure of the departure of the simulation
from self-similarity, and the adequacy of the statistical sample.

Finally, a similarity analysis can also be performed for any passive scalars present
in the flow. Such an analysis is presented in Appendix B.

4. Structures
The large statistical differences between the three wakes discussed in §3 are a

manifestation of the differences in the structure of the turbulence in these flows. This
difference can be seen in figure 13, where spanwise vorticity contours in (x, y)-planes
of all three flows are shown. In the strongly forced case, there are concentrations
of vorticity fluctuations that occur alternately on one side of the wake or the other,
similar to the Kármán street commonly observed in transitional wakes and observed
by Wygnanski et al. (1986) in the far field of a fully developed wake. By examining
other (x, y)-planes (not shown), one can determine that these large-scale features
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Figure 13. Contours of spanwise vorticity in an (x, y)-plane in (a) the unforced flow at τ = 91.5,
(b) the weakly forced flow at τ = 116, and (c) the strongly forced flow at τ = 50.0. The contour
increments are (a) 2.5U0/b, (b) 5U0/b and (c) 20U0/b, and negative contours are dotted. Tic marks
are at 5ṁ/Ud intervals.

are spanwise coherent. The vorticity concentrations are also accompanied by large
incursions of irrotational fluid into the wake. In contrast, the unforced wake exhibits
no such vorticity concentrations, and relatively small incursions of irrotational fluid.
It appears to consist of a slab of turbulence with undulating boundaries. The weakly
forced flow is intermediate between the other two cases. Forcing was also found to
produce large-scale structures similar to those in transitional flows in the turbulent
mixing layers of Rogers & Moser (1994).

Another striking difference between the two flows is that the forced flows appear
to have vorticity fluctuations of smaller scale, especially the strongly forced flow. This



Self-similarity of plane wakes 279

is consistent with the appearance of the streamwise spatial spectra in figure 1 and the
fact that finer spatial resolution was required to compute the forced flow accurately.
Comparing figure 13(a) and figure 13(c), it appears that the strongly forced flow
has a larger turbulence Reynolds number than the unforced flow since the ratio of
the size of the large-scale features to the size of the small-scale features is greater.
Indeed the centreline value of the turbulence Reynolds number q4/(εν) is an order of
magnitude larger in the strongly forced case than in the unforced case (q4/(εν) = 4000,
1500, and 460 for strongly forced, weakly forced, and unforced wakes, respectively)
despite the fact that the Reynolds numbers based on ṁ are the same in all three
flows.

The mixing layer simulations of Rogers & Moser (1994) and Rogers & Moser
(1993) suggest that whenever there is a flow region that is dominated by large-scale
strain, but largely devoid of (spanwise) vorticity, it is likely that long coherent vortices
aligned with the extensional strain (so-called rib vortices), will develop. Such a region
might be expected between the vortices in a Kármán street, and indeed rib vortices
have been observed in simulations of transitional wakes (Lasheras & Meiburg 1990).
A strain-dominated region of this type appears to exist in the forced flow shown in
figure 13(c) (at x ≈ 30ṁ/Ud), but no rib vortices were found at this time. However, at
an earlier time (τ = 26.3, figure 14), the strain-dominated region is also present and
rib vortices occur there. The rib vortices can be seen in figure 14(b) as the long thin
streamwise-oriented regions of large enstrophy at x ≈ 32ṁ/Ud. These vortices span
the strain-dominated region, and do not occur elsewhere in the strongly forced flow or
anywhere in the weakly forced or unforced flow, which have no such strain-dominated
regions. The reason for the disappearance of the rib vortices at later times has not
yet been investigated.

5. Conclusions
The evolution of self-similar turbulent plane wakes has been studied using three

direct numerical simulations of time-developing wakes. Each simulation was initialized
using fields from a previously computed fully developed turbulent boundary layer, thus
the simulations are time-developing models for the wake of a flat plate. In addition
to the boundary layer turbulence, the energy in the two-dimensional disturbances
was augmented in two of the simulations, with the strength of the augmentation
differing in the two cases. This was done to mimic the experimental situation in which
nearly two-dimensional disturbances can be introduced into the flow as a result of
the receptivity of the splitter-plate tip to acoustic disturbances in the facility or by
mechanical forcing.

Of the three simulated wakes, the unforced and weakly forced flows exhibit an
extended period of self-similarity before the finite computational domain size con-
strains the flow evolution. In addition, the strongly forced flow has a short period of
approximate self-similarity, and the results of recent large-eddy simulations suggest
that this self-similar period would endure longer in a larger computational domain
(Ghosal & Rogers 1997). While all three flows are at least approximately self-similar,
they have markedly different growth rates, turbulence Reynolds numbers, Reynolds
stress tensors, and large-scale structures. Thus, consistent with the analysis of the
governing equations and experimental observations in several spatially evolving plane
wakes, it appears that multiple long-lived self-similar or approximately self-similar
states are possible in this flow (if the normalized growth rates differ). Based on the
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Figure 14. (a) Contours of spanwise vorticity in an (x, y)-plane (contour increment of 10U0/b) and
(b) top view of regions where enstrophy (ωiωi) is larger than 8700U2

0/b
2 in the strongly forced flow

at τ = 26.3. Tic marks are at 5ṁ/Ud intervals.

current simulations and available experimental data, we cannot definitively determine
whether these different similarity states will persist indefinitely.

It is also evident from the analysis of the governing equations for the mean flow
and Reynolds stress tensor that the scaling for many of the terms in the equations
is ambiguous. This is due to the existence of two velocity scales (the growth rate
and the deficit velocity), or equivalently, the existence of an extra parameter (the
non-dimensional growth rate parameter β). It was shown that sensible scalings could
be found to minimize the differences in the scaled quantities from the different
wake flows. The resulting scalings amount to including various factors of β in the
conventional scalings based on the velocity deficit.

However, when writing the scaled self-similar Reynolds stress equations using these
scalings, factors β appear in the equations. Further, there is no choice of scalings for
which factors β are absent. Thus, while plane wakes with different growth rates can
be individually self-similar, they cannot be dynamically similar to each other. This
implies that there is at least a one-parameter family of possible high-Reynolds-number
self-similar plane wakes, parameterized by the growth rate (β). Further, the analysis
does not require that wakes with the same growth rate are similar; it says only that
this is allowed. Despite the lack of dynamic similarity, it does appear from both
experiments and the current simulations that the mean velocity profile in self-similar
plane wakes is universal.

One measure of the structural similarity of the three wakes is the ratio of the energy
in the ‘spanwise-coherent’ fluctuations (defined in §3.4) to the total fluctuation energy.
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This ratio should be constant in a self-similar flow, and it is in the weakly forced
wake. In the strongly forced wake the ratio is evolving, but appears to be approaching
the same value. In the unforced flow, the ratio is smaller but it continues to grow very
slowly through the self-similar period. Thus, in this regard the unforced flow is going
through a very slow transient as discussed above, although there is no evidence that
this is changing the growth rate. This slow increase in the spanwise-coherent energy
fraction results in a slight monotonic increase in the scaled cross-stream fluctuation in-
tensity v2, which has also been observed in experiments (Weygandt & Mehta 1995). It
may be that in truly self-similar wakes, the spanwise-coherent energy ratio is universal
or nearly universal. The importance of the coherent fluctuations to the self-similar evo-
lution of the wakes is emphasized by the fact that there is much less variation among
the different wakes if only the incoherent fluctuations are included in the statistics.

Over their self-similar periods, the unforced and weakly forced flows exhibit good
similarity by the measures generally available from experiments. Yet the slow change
in the spanwise-coherent energy measure and other parameters such as the integrated
dissipation (figure 2d) show that the similarity is not exact. This suggests that self-
similarity can also be imperfect in experimental ‘self-similar’ wakes without being
detected. Even in a hypothetical infinitely wide self-similar wake, there could be large
spanwise wavelength fluctuations, whose evolution spoils exact structural similarity.
It is not unreasonable to suppose that as the wake grows, these large-wavelength
fluctuations can become significant, possibly ending or changing the self-similar
evolution. If this is true, then any similarity state in a wake could be ‘temporary’, like
the similarity observed in the simulations.

The forcing also has an impact on the vortical structures in the flow, with the forced
flow exhibiting large-scale Kármán-vortex-street-like structures similar to those ob-
served in transitional wakes. No such organized structures were present in the unforced
flow, where the vorticity was concentrated in a more or less uniform undulating slab
without free-stream fluid penetrating deep into the layer. The organized large-scale
structure of the strongly forced flow results in strain-dominated ‘braid’ regions be-
tween large-scale structures. Early in the flow evolution it is possible to find streamwise
‘rib’ vortices within the braid regions, although they do not appear to be as persistent
as similar structures in forced mixing layers.

The forcing used in these computations has clearly resulted in qualitative differ-
ences in the turbulence. It impacts both the statistics and flow structure and these
differences can be maintained for significant time periods, possibly indefinitely. The
implications of these observations for the modelling of turbulent wakes are profound.
In geometrically equivalent flow situations, it is apparently possible to get wakes
with greatly differing growth rates and statistical and structural properties depending
on uncontrolled and possibly unknown properties of the initial or inlet conditions.
Worse, given the nature of the differences in the initial conditions in the flows studied
here, it is likely that standard turbulence models (e.g. k–ε or Reynolds stress trans-
port models), which are insensitive to the features of the initial or inlet conditions
that control the state of the wake, would be incapable of predicting this flow. This
non-uniqueness is important even if it is temporary, since in many situations, the
importance of the wake diminishes far from the wake generator.

We thank Professor W. K. George for his help in developing the self-similar analysis
presented above for the temporally evolving plane wake and for his insightful com-
ments regarding the evolution of the simulated wake flows. Much of the computations
were performed on the NAS supercomputers at the NASA Ames Research Center.
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Appendix A. Reynolds stress balances
The governing equation for the evolution of the Reynolds stresses in a time-

developing plane wake can be written as

∂uiuj

∂t
= −

(
uiul

∂Uj

∂xl
+ ujul

∂Ui

∂xl

)
− ∂uiuju2

∂x2

−
(
uj
∂(p/ρ)

∂xi
+ ui

∂(p/ρ)

∂xj

)

+ν
∂2uiuj

∂2x2

− 2ν
∂ui

∂xl

∂uj

∂xl
. (A 1)

The ‘time derivative’ on the left is thus composed of ‘production’, ‘turbulent diffusion’,
‘velocity–pressure gradient’, ‘viscous diffusion’, and ‘dissipation’ terms, where these
terms are given in this order in the above equation (and include minus signs where
present). It is also possible to further split the velocity–pressure gradient term into
‘pressure–strain’ and ‘pressure diffusion’ terms,

−
(
uj
∂(p/ρ)

∂xi
+ ui

∂(p/ρ)

∂xj

)
=
p

ρ

(
∂ui

∂xj
+
∂uj

∂xi

)
− 1

ρ

(
δi2
∂puj

∂x2

+ δj2
∂pui

∂x2

)
. (A 2)

In these equations, only the mean velocity component U1 is non-zero and due to
homogeneity, derivatives of averaged quantities with respect to x1 and x3 are zero.

Thus, there is no production term in the u2
2 and u2

3 equations and no pressure diffusion

term in the u2
1 and u2

3 equations. The equation for q2 = uiui can be obtained by
contracting the indices in the above equations. For this equation, the pressure–strain
is zero and the velocity–pressure gradient term includes only pressure diffusion.

The profiles of each of the terms in the Reynolds stress balance equations (scaled
by U3

0/b with no factors β), time averaged over the self-similar period, are shown
in figure 15 for the unforced and weakly forced wake simulations (note that the
q2 balances were shown in figure 12).† The viscous diffusion terms are not plotted
because they are an order of magnitude smaller than any other term across the entire
layer and thus cannot be distinguished from zero in the figure.‡

If the wakes considered here were exactly self-similar, then the centreline level of
uiuj/U

2
0 would remain unchanged. However, since U0 decays in time, this does not

imply that the scaled time derivative (dashed) curves in figure 15 should be zero
at η = y/b = 0. It is possible to use the uiuj profiles shown in figure 5 with the
assumption of self-similarity to derive the entire ∂uiuj/∂t profiles, which can then be
compared to those in figure 15 to obtain a measure of the departure of the simulations
from self-similarity. Generalizing equation (3.30) by defining the functions fij and gij ,

fij(η) =
uiuj(η)

U2
0

, gij(η) =
b

U3
0

∂uiuj(η)

∂t
, (A 3)

one obtains

gij = −β(2fij + ηf′ij). (A 4)

At the centreline gij(0) = −2βfij(0). Obtaining fij(0) from figure 5 and β from §3.2

† Those for the strongly forced wake flow show significant differences, including overall higher
levels (no factors β in the scaling) and turbulent and pressure diffusion dominating production and
dissipation. They are not presented here because of the poorer self-similarity of the strongly forced
flow.
‡ Note that this is not the case early in the flow evolution, when the initial boundary layer

turbulence has significant viscous diffusion near the ‘wall’, which has just been ‘removed’.
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Figure 15. Reynolds stress balances for the (a, b) u2, (c, d) v2, (e, f ) w2, and (g, h) uv equations
for the unforced (a, c, e, g) and weakly forced (b, d, f, h) wakes: , either production (positive
curves in (a) and (b), negative in (g) and (h) or dissipation (positive in (g) and (h), negative in all
others); , time derivative; , turbulent diffusion; , pressure–strain correlation; and

, pressure diffusion.
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the computed values of gij(0) can be seen to be in fairly good agreement with the
values plotted in figure 15.

Appendix B. Similarity for a passive scalar field
A similarity analysis of the type presented in §3.1 can also be applied to the

equations governing the evolution of a passive scalar quantity in the temporally
evolving wake flow. In this Appendix two different geometries for the passive scalar
field are examined. First, the similarity analysis is applied to a two-stream passive
scalar field in which the mean value of the passive scalar differs on the two sides of
the wake. Physically, this corresponds to the wake behind a splitter plate separating
two equal velocity streams, which each have a different level of the scalar. Next the
similarity analysis is extended to a second geometry in which the mean value of the
passive scalar on both sides of the wake is equal, but a surplus or deficit of the scalar
occurs in the wake. Physically this geometry corresponds to a wake produced behind
a hot/cold plane body or the wake produced by a plane body injecting a scalar into
the field.

The equation governing the evolution of the mean value of the passive scalar in
the temporally evolving wake is given by

∂Θ

∂t
= −∂vθ

∂y
+ α

∂2Θ

∂y2
(B 1)

where Θ is the mean value of the passive scalar, θ is the scalar fluctuation, and α is
the molecular diffusivity of the passive scalar. As in §3.1, it is hypothesized that the
equation governing the mean scalar field in the two-stream geometry has a similarity
solution of the form

Θ −Θ1 = Sc(t)sc(ηθ) (B 2a)

vθ = Rvθ(t)rvθ(ηθ), (B 2b)

where ηθ is a similarity coordinate based on a characteristic length scale for the
passive scalar given by

ηθ =
y

δθ
(B 3)

and Θ1 is the mean value of the passive scalar in the flow as y → −∞.
The hypothesized similarity solution given in equation (B 2) must satisfy the bound-

ary conditions as y → ±∞. Consequently, the scale for the mean value of the scalar
variable must be proportional to the difference of the mean value of the scalar at the
two limits; i.e.

Sc(t) ∝ UdΘ = Θ2 −Θ1, (B 4)

where Θ2 is the mean value of the scalar as y → ∞. It is conventional to define this
condition as an equality so sc(ηθ) is a function which varies between 0 and 1.

Substituting the hypothesized similarity solutions into equation (B 1) one obtains

−
[
Sc

δθ

dδθ
dt

]
ηθ

dsc

dηθ
= −

[
Rvθ

δθ

]
drvθ
dηθ

+ α

[
Sc

δ2
θ

]
d2sc

dη2
θ

. (B 5)

The molecular diffusion terms in this equation are often neglected relative to the
turbulent diffusion, but this is not necessary for a similarity solution to exist for this
turbulent flow. Consequently, the diffusion terms are not neglected in this analysis.
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The hypothesized similarity solutions are consistent with equation (B 1) if[
Sc

δθ

dδθ
dt

]
∝
[
Rvθ

δθ

]
∝
[
Sc

δ2
θ

]
, (B 6)

so that

Rvθ ∝ Sc
dδθ
dt
∝ UdΘ

dδθ
dt

(B 7)

and

dδ2
θ

dt
= constant. (B 8)

Therefore, the proposed similarity solutions are consistent with the equation if the
growth rate of the length scale characteristic of the scalar field is given by

δθ ∝ (t− toθ)1/2, (B 9)

analogous to the length scale for the velocity field. Note, equation (B 9) does not
assume that the virtual origin of the scalar field coincides with the virtual origin of
the velocity field. The relationship between the locations of these two virtual origins
is deduced below by examining the evolution equation for the passive scalar flux.

As in §3.1, the analysis is next extended to the second-moment equations, here
given by evolution equations for the scalar variance and turbulent scalar flux

∂θ2

∂t
= −2vθ

∂Θ

∂y
− ∂vθ2

∂y
+ α

∂2θ2

∂y2
− εθ, (B 10a)

∂uθ

∂t
= −θ

ρ

∂p

∂x
− vθ∂δU

∂y
− uv ∂Θ

∂y
− ∂uvθ

∂y
+ α

∂

∂y
u
∂θ

∂y
+ ν

∂

∂y
θ
∂u

∂y
− εuθ, (B 10b)

∂vθ

∂t
= −θ

ρ

∂p

∂y
− v2

∂Θ

∂y
− ∂v2θ

∂y
+ α

∂

∂y
v
∂θ

∂y
+ ν

∂

∂y
θ
∂v

∂y
− εvθ, (B 10c)

where εθ , εuθ , and εvθ are dissipation rates given by

εθ = 2α

{(
∂θ

∂x

)2

+

(
∂θ

∂y

)2

+

(
∂θ

∂z

)2
}
, (B 11a)

εuθ = (ν + α)

{
∂u

∂x

∂θ

∂x
+
∂u

∂y

∂θ

∂y
+
∂u

∂z

∂θ

∂z

}
, (B 11b)

and

εvθ = (ν + α)

{
∂v

∂x

∂θ

∂x
+
∂v

∂y

∂θ

∂y
+
∂v

∂z

∂θ

∂z

}
. (B 11c)

Using the definitions given in table 1 in §3.1 and table 2, a similarity solution is
possible when[

dVθ
dt

]
∝
[
Vθ

δθ

dδθ
dt

]
∝
[
Ttθ

δθ

]
∝
[
Vθ

δ2
θ

]
∝
[
RvθSc

δθ

]
∝ [Dθ] , (B 12a)

[
dRuθ
dt

]
∝
[
Ruθ

δθ

dδθ
dt

]
∝ [Πuθ] ∝

[
RvθUs

δ

]
∝
[
RsSc

δθ

]
∝
[
Ttuθ

δθ

]
∝
[
Muθ

δθ

]
∝
[
Ruθ

δ2
θ

]
∝ [Duθ] , (B 12b)
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Similarity
Term Form conditions

Θ −Θ1 Sc(t)sc(ηθ) Sc ∝ UdΘ or
1

δθ
θ2 Vθ(t)vθ(ηθ) Vθ ∝ Sc2

uθ Ruθ(t)ruθ(ηθ) Ruθ ∝ Sc
dδθ
dt

vθ Rvθ(t)rvθ(ηθ) Rvθ ∝ Sc
dδθ
dt

p

ρ

∂θ

∂x
Πuθ(t)πuθ(ηθ) Πuθ ∝

Sc

δ2
θ

dδθ
dt

p

ρ

∂θ

∂y
Πvθ(t)πvθ(ηθ) Πvθ ∝

Sc

δ2
θ

dδθ
dt

vθ2 Ttθ(t)ttθ(ηθ) Ttθ ∝ Sc2 dδθ
dt

uvθ T tuθ(t)ttuθ(ηθ) Ttuθ ∝
Sc

δθ

dδθ
dt

v2θ Ttvθ(t)ttvθ(ηθ) Ttvθ ∝
Sc

δθ

dδθ
dt

pθ

ρ
P tvθ(t)ptvθ(ηθ) Ptvθ ∝

Sc

δθ

dδθ
dt

u
∂θ

∂y
Muθ(t)muθ(ηθ) Muθ ∝

Sc

δθ

dδθ
dt

v
∂θ

∂y
Mvθ(t)mvθ(ηθ) Mvθ ∝

Sc

δθ

dδθ
dt

εθ Dθ(t)dθ(ηθ) Dθ ∝
Sc2

δθ

dδθ
dt

εuθ Duθ(t)duθ(ηθ) Duθ ∝
Sc

δ2
θ

dδθ
dt

εvθ Dvθ(t)dvθ(ηθ) Dvθ ∝
Sc

δ2
θ

dδθ
dt

Table 2. Similarity forms for terms in the scalar equations

[
dRvθ
dt

]
∝
[
Rvθ

δθ

dδθ
dt

]
∝ [Πvθ] ∝

[
Ptvθ

δθ

]
∝
[
KvSc

δθ

]
∝
[
Ttvθ

δθ

]
∝
[
Mvθ

δθ

]
∝
[
Rvθ

δ2
θ

]
∝ [Dvθ] . (B 12c)

The first term in equation (B 12a) is included to allow for the general possibility
that the scale for the scalar variance is a function of time. If this is not the case (as
in this first scalar geometry being considered), the term is zero and consequently does
not appear in the equation or provide a constraint for the similarity analysis.
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Figure 16. Hydrodynamic to scalar width ratio for the , unforced; , weakly forced;
and , strongly forced wake simulations.

The proportionality of the second and fifth terms in equation (B 12a) implies that

Vθ ∝ (Sc)2 ∝ (UdΘ)2. (B 13)

Thus, the similarity scale for the scalar variance is independent of time in this two-
stream geometry. As noted above, in this case the first constraint in equation (B 12a)
would not appear because this term is zero in the original equation. The scales for
the other moments in the scalar variance equation are given in table 2.

The proportionality of the second and fifth terms in equation (B 12c) results in(
dδθ
dt

)2

∝ U2
s , (B 14)

or
1

δ2
θ

∝ 1

δ2
, (B 15)

implying

(t− toθ)−1 ∝ (t− to)−1, (B 16)

where to is the location of the virtual origin for the velocity field and toθ is the virtual
origin for the scalar field. This condition can also be written as

t− toθ
t− to

= constant, (B 17)

from which it is clear that a similarity solution can only exist for the equations
governing the scalar field if the virtual origin of the scalar field is located at the same
point as the virtual origin of the velocity field. Note that this condition can also be
derived from the proportionality of the fourth and fifth terms in equation (B 12c).

Although not needed to close the mean scalar equation, the streamwise scalar flux
uθ is also non-zero in this flow as a result of the mean shear. The terms in this
equation provide no additional constraints on the self-similar solution; their form is
also given in table 2.

In all three wake flows, the evolution of a passive scalar field of the type discussed
above (ranging from zero to one in the two free streams) has been calculated along
with the hydrodynamic flow field. Although the terms in the equations governing the
second-order moments of the scalar statistics have not been examined, the behaviour
of the mean scalar field, the scalar fluctuation intensity, and both components of the
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scalar flux have been studied for the unforced case. All of these quantities appear to
be evolving self-similarly over the self-similar period of the hydrodynamic evolution
as evidenced by reasonable collapse of the profiles when scaled by the appropriate
variables. Although the length scale b does a fair job of collapsing profiles from
different times, better collapse is obtained by scaling with a scalar thickness δθ derived
from the mean scalar profile. Here δθ is taken to be the distance between the points
where Θ = 0.25 and Θ = 0.75. Figure 16 contains the time evolution of the ratio
b/δθ . For all cases this ratio is approximately constant over the self-similar periods
defined previously, as required for self-similarity from equation (B 15). Note that the
ratio between δθ of an error function and b of its derivative (a Gaussian) is given by
b/δθ = 1.75, which lies between the unforced and weakly forced cases in figure 16.

The analysis of the scalar field in a temporally evolving plane wake flow can easily
be extended to a second geometry in which there is a scalar deficit or surplus in the
wake. The analysis for all of the higher-order moments is the same as the analysis
for the previous geometry. The only difference between the two problems is that the
scale for the mean value of the scalar differs. Thus, all that is necessary to extend the
analysis to this second geometry is an analysis of the equation for the mean value
of the scalar. When a scalar deficit occurs in the wake it is conventional to write the
equation in a deficit form; i.e.

∂(Θ∞ −Θ)

∂t
=
∂vθ

∂y
+ α

∂2(Θ∞ −Θ)

∂y2
(B 18)

where Θ∞ is the value of the scalar in the free stream. This equation can be integrated
to yield

∂

∂t

∫ ∞
−∞

(Θ∞ −Θ) dy = 0 (B 19)

if it is assumed that there is no free-stream turbulence and the effect of the diffusion
goes to zero as y → ±∞.

Thus, if it is hypothesized that similarity solutions of the form

Θ∞ −Θ = Sc(t)sc(ηθ) (B 20)

and

vθ = Rvθ(t)rvθ(ηθ) (B 21)

exist for the present geometry, it follows that these solutions are consistent with the
equations for the mean scalar if

Scδθ ∝ constant (B 22a)[
dSc

dt

]
∝
[
Sc

δθ

dδθ
dt

]
∝
[
Rvθ

δθ

]
∝
[
Sc

δ2
θ

]
. (B 22b)

Thus, for the deficit flow

Sc ∝ 1

δθ
, (B 23a)

dδ2
θ

dt
∝ constant , (B 23b)

which is analogous to the conditions derived for the velocity field. The scale for all
of the higher-order moments can also be deduced from the analysis of the equations
outlined above, but using the new scale Sc for the mean scalar field.
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